• September 22, 2021

Pushing Computing to the Edge With Innovative Microchip Design

Responding to artificial intelligence’s exploding demands on computer networks, Princeton University researchers in recent years have radically increased the speed and slashed the energy use of specialized AI systems. Now, the researchers have moved their innovation closer to widespread use by creating co-designed hardware and software that will allow designers to blend these new types of systems into their applications.

“Software is a critical part of enabling new hardware,” said Naveen Verma, a professor of electrical and computer engineering at Princeton and a leader of the research team. “The hope is that designers can keep using the same software system – and just have it work ten times faster or more efficiently.”

By cutting both power demand and the need to exchange data from remote servers, systems made with the Princeton technology will be able to bring artificial intelligence applications, such as piloting software for drones or advanced language translators, to the very edge of computing infrastructure.

“To make AI accessible to the real-time and often personal process all around us, we need to address latency and privacy by moving the computation itself to the edge,” said Verma, who is the director of the University’s Keller Center for Innovation in Engineering Education. “And that requires both energy efficiency and performance.”

To approach the problem, the Princeton researchers rethought computing in several ways. First, they designed a chip that conducts computation and stores data in the same place. This technique, called in-memory computing, slashes the energy and time used to exchange information with dedicated memory. The technique boosts efficiency, but it introduces new problems: because it crams the two functions into a small area, in-memory computing relies on analog operation, which is sensitive to corruption by sources such as voltage fluctuation and temperature spikes. To solve this problem, the Princeton team designed their chips using capacitors rather than transistors. The capacitors, devices that store an electrical charge, can be manufactured with greater precision and are not highly affected by shifts in voltage. Capacitors can also be very small and placed on top of memory cells, increasing processing density and cutting energy needs.

But even after making analog operation robust, many challenges remained. The analog core needed to be efficiently integrated in a mostly digital architecture, so that it could be combined with the other functions and software needed to actually make practical systems work. A digital system uses off-and-on switches to represent ones and zeros that computer engineers use to write the algorithms that make up computer programming. An analog computer takes a completely different approach. In an article in the IEEE Spectrum, Columbia University Professor Yannis Tsividis described an analog computer as a physical system designed to be governed by equations identical to those the programmer wants to solve. An abacus, for example, is a very simple analog computer. Tsividis says that a bucket and a hose can serve as an analog computer for certain calculus problems: to solve an integration function, you could do the math, or you could just measure the water in the bucket.

Leave a Reply

Your email address will not be published. Required fields are marked *